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Extreme Values of Queues, Point Processes

K
X and Stochastic Networks
¢
i
W This two-year research grant consisted of several themes. The
o
B
‘4 following is a summary of our results.
p e
i S
— ol
\'é ~ » Y - \
X% 1. Compound Poisson Approximations S s
W 4 -
0
;ﬁ{ C,//// Our work on this topic just appeared in Serfozo, R.F. (1986).
oy ,

Compound Poisson Approximations for Sums of Random Variables Ann.

%; Probability, October issue.
e
i?\ During the last 20 years, several theorems have been proved on the

convergence of sums of independent random variables to compound Poisson
~j variables. Little was known about how close the sums are to being
: compound Poisson. Examples were published that seemed to indicate that
1}

one could not develop compound Poisson approximations that would be as

o natural as normal or Poisson approximations.
\'.
0
}% However, we have been able to develop such approximations. We have
e

proved that a sum of dependent random elements is approximately compound
Wy Poisson when the variables are rarely nonzero and, given they are
!
"o nonzero, their conditional distributions are nearly identical.

We have

given several upper bounds on the total-variation distance between the

Ny distribution of such a sum and a compound Poisson distribution. These

b

f% bounds are analogous to Berry—-Esseen bounds for normal approximations.

ul Qur results apply to general random elements such as unions of random !
- |
§: sets and sums of random measures or point processes. Our results appear f
:k to be useful for characterizing high-level exceedances of dependent

variables. We hope to pursue this in the near future.
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2. Partitions of Point Processes
y
Our work on this appeared in Serfozo, R.F. (1985)., Partitions of

2 Point Processes: Multivariate Poisson Approximations. Stoch. Process

%‘ Appl. 20, 281-294.

B We proved that when a point process is partitioned into certain

ih sparse subprocesses, then the subprocesses are asymptotically

}E multivariate Poisson or compound Poisson. Using results described above,

A we derived bounds for the total-variation distance between the

i subprocesses and their limits. We did this for several types of

:é partitioning rules including independent, Markovian and batch assignment

R of points. Partitions of point processes are omnipresent in flows of

;g parts in manufacturing networks and distribution systems, and flows of

a? data packets in computer networks.

o 3. Extreme Values of Birth and Death Processes and Queues

:z Our work on this has been documented in:

?} Serfozo, R.,F. (1987). Extreme Values of Birth and Death Processes and

‘5 Queues. Stoch. Processes Appl. (to appear).

fs Serfozo, R.F. (1986). Extreme Values of Queue Lengths in M/G/l and

:f GI/M/1 Systems. Technical Report.

F: In these papers, we solve the long-standing problem of

_g characterizing the asymptotic behavior of the maximum values of birth and

52: death processes and queues over large time intervals. When these i
ﬁ: processes are positive recurrent, the distributions of their maxima do E
:E not converge to a non-degenerate distribution, in the usual way under ‘
'

é; linear normalizations. We show, however, that by varying the process

» parameters in a certain way as the time interval grows, then these maxima
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JE& do indeed have three possible limit distributions. Two of them are
':.::b. classical extreme value distributions and the other one is a new

;"!r" distribution.

-: Our results on birth and death processes include conditional limit

:{E . theorems for maxima of transient processes conditioned that they are

r gt finite. For the M/G/1 and GI/M/1 queues, the analysis was more

,&3 complicated since a certain basic distribution was known only indirectly
_, in terms of ratios of integrals of complex valued functions.

':,:.s".?: 4. Stationary and Reversible Processes

,:' . Our work on this appeared in Serfozo, R.F. (1986). Heredity of
wh Stationary and Reversible Processes. Adv. Appl. Probability.

i‘t' The notion of reversibility plays an important role in

:g characterizing the equilibrium behavior of a network of queues. There
b are a number of processes associated with a queueing network that are

'{"\ important by themselves. Examples are the number of customers in a

. ‘#g certain sector of the network and the point processes of customer flows

3 between pairs of nodes. One frequently confronts the problem: Are these

;',3‘:' related processes stationary, reversible or ergodic when the network

Sty

process has these properties? In other words, if a process 1is

)

e stationary, reversible or ergodic, then what functionals cf the process
i,'- have these properties. We answer this by identifying a large class of
i. ': such functionals. In doing so, we generalize a fundamental result for
s the heredity of stationarity and we provide an efficient characterization

«.ﬁ of reversibility that can be used for general random elements such as

&'&: point processes and random sets.

ey

W

Y

) A : -
. p Y TRy 30\ O YONOOONCYO OO R Y e D O 2 KN M
N "g;“'”v‘?:}j‘;%.b £y MRS NI R ET ;’:\.lnb%“"‘r‘i\? ‘;0’,.;3“:’,"3‘ 'J?‘g"‘ﬁ’ﬂ..ﬂh.' e J"\"' -“‘ﬂ‘.'; 'Q.. i ‘ﬂ. [WNMA) ‘g'“»‘. N X M) ..!




e 5. Extremal Problems in Stochast Networks ¢

" Our work on this will soon appear in Weiss, G. (1987). Stochastic

= Bounds on Distributions of Optimal Value Functions With Applications to
¢

PERT, Network Flows and Reliability. Operations Research, to appear.

5 It is generally impossible to obtain tractable expressions for the
f; probability distributions of (1) Critical path lengths in a PERT network,
f’ (2) Maximal flows 1in a network, or (3) Lifetimes of complicated systems.
‘? Consequently, it is natural to seek partial information on worse-case

1“; bounds of these variables. This can be formulated as a mathematical

programming problem. We present an algorithm for solving this problem.

£

A

The solution can then be used to obtain bounds for general networks.
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